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CELESTIAL DIFFUSE GAMMA RADIATION ABOVE

30 MeV OBSERVED BY SAS-II

C. E. FICHTEL, D. A. KNIFFEN, and R. C. HARTMAN
Goddard Space Flight Center, Greenbelt, Maryland

ABSTRACT

The Small Astronomy Satellite (SAS)-II, launched on November 15,

1972, carried into orbit a 32-deck magnetic-core digitized spark chamber

gamma ray telescope to study celestial gamma radiation in the energy

range above 30 MeV. In the study of several regions with bII > 150,

a finite, diffuse flux of gamma rays with a steep energy spectrum in

the energy region from 35 to 200 MeV is observed. Representing the

energy spectrum by a power law of the form dJ/dE = AE-a over this energy

range, is found to be 0.3' and the integral flux above 100 MeV is+0.- 03

2.8-0.7 x 10- 5 photons/cm2 sterad. sec. Combining this result with

existing low energy gamma ray data yields an energy spectrum which is

not a simple power law in energy, as in the X-ray region, but which

demonstrates first an increase and then a decrease in slope, consistent

within uncertainties with that predicted by cosmological theories, in-

cluding the continuous production of high energy gamma rays primarily

from U° mesons throughout the history of the universe.

I. INTRODUCTION

The significance of gamma ray astronomy lies in its direct re-

lationship to the highest energy celestial phenomena occurring in our

galaxy and beyond. Although the rewards of gamma ray astronomy have

long been known to be high, the first unambiguous positive observations

of extraterrestrial gamma rays above a few tens of MeV were made by



Kraushaar, Clark, and Garmire (1973) with a detector on OSO-3 launched

in 1968. This excellent pioneering experiment measured a general diffuse

flux and an enhanced emission from the galactic disk above 50 MeV; how-

ever the relatively small size of the OSO-3 detector together with the

limited angular and energy resolution left unanswered many questions

concerning the origin of this radiation.

In order to obtain a clear identification of these high energy

photons, to measure the direction of arrival of the gamma rays to within

a few degrees, and to obtain information on their energy spectra, several

groups developed spark chamber telescope systems (See, for example,

Kniffen, 1971.). In particular, Ehrmann, Fichtel, Kniffen, and Ross

(1967) developed an automated magnetic core spark chamber gamma ray tele-

scope through a series of balloon flights. Following this development,

a satellite gamma ray telescope was built (Derdeyn, Ehrmann, Fichtel,

Kniffen, and Ross, 1972) and launched as the second satellite of the Small

Astronomy Satellite (SAS) series on November 15, 1972. Some of the first

results from this experiment will be discussed here, specifically those

involving the diffuse radiation forI b 1Ii > 150.

II. DESCRIPTION OF THE EXPERIMENT

A schematic diagram of the gamma ray telescope flown on SAS-II is

shown in Fig. 1. The spark chamber assembly consists of 16 spark chamber

modules above a set of four central plastic scintillators and another

16 modules below these scintillators. Thin tungsten plates, averaging

0.03 radiation lengths thick, are interleaved between the spark chamber

modules, which have an active area of approximately 640 cm2 . The large

number of thin tungsten plates and spark chambers serve a dual purpose,
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first to provide material for the gamma ray to be converted into an

electron pair which can then be clearly identified and from which the

arrival direction of the gamma ray can be determined, and, secondly, to

provide a means of determining the energy of the electrons in the pair

by measuring the Coulomb scattering. The energy threshold is about

30 MeV. The energy of the gamma-ray can be measured up to about 200 MeV,

and the integral flux above 200 MeV can be determined. A more complete

discussion of the SAS-II gamma ray telescope is given by Derdeyn et al.

(1972). The calibration and data analysis are similar to that used for

previous balloon gamma ray digitized spark chambers (Fichtel et al.,

1969; Kniffen, 1969; Fichtel et al., 1972; and Thompson, 1973).

The SAS-II satellite is capable of being pointed in any direction,

and has normally viewed the same region of the sky for periods of about

a week. The orbit is nearly equatorial at an altitude ranging from

about 440 km to 610 km.

III. RESULTS

For the portion of the celestial sphere which we have examined thus

far, there is a diffuse component of high energy gamma rays which seems to

be uniform for regions away from the galactic plane. The gamma-ray experi-

ment on OSO-3 of Kraushaar et al. (1973) had previously indicated a finite,

apparently constant diffuse flux for regions of the sky which were far

enough from the galactic plane that no portion of the relative wide angle

of the OSO-3 detector (- 350) overlapped the galactic plane. An integral

value of (3.0 + 0.9)-10-5/(cm2 sterad. sec.) was quoted for the intensity

above 100 MeV, but essentially no energy spectral information was obtained.

Data to be reported here comes from three separate viewing periods of
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SAS-II, and includes the regions of the sky centered at (III = 0, bII= +250),

( I= 0, bII = +580) and ()II = 1900, bii = -300) and including solid

angles of about 0.25 sterad. From SAS-II observations, it now appears

that, at least in the regions examined thus far, for b ll - 15* the gamma

ray intensity consists of a general diffuse intensity, quite different in

energy spectrum from the emission from the galactic disc. Further, in the

three regions mentioned the intensity is the same within uncertainties

for data summed over each of the regions. Those portions of the regions

for which b ll < 150 have been excluded. Since there is no detectable

difference, the data of the three regions are combined and the diffuse

energy spectrum calculated from the data is shown in Fig. 2. The un-

certainty indicated in the figure is due primarily to the fact that the

calibration data is not fully analyzed; so preliminary energy resolution

and detection area-efficiency factors are being used. The energy

spectrum curve is based on about 360 gamma rays. Notice that the spectrum

is quite steep, steeper than any other gamma ray spectra observed on

SAS-II or the earlier balloon work of this group (e.g. Fichtel et al.,

1969 and 1972), including the galactic center region and the atmospheric

secondary spectrum, upward or downward. If the differential energy spec-

trum is represented by the equation dJ/dE = AE-a, a is measured to be

2.7+0.4 9-0.3. The integral intensity above 100 MeV is (2.8 7)*10 -5 photons/

(cm2 sterad. sec.) consistent with the OSO-3 result averaged over all

regions of the sky (Kraushaar et al., 1973).

Figure 2 shows that when other experimental data of lower energies

are added, the diffuse gamma radiation for bi I > 15 exhibits an en-

hancement in the interval from 1 to 10 MeV relative to the simple
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extension of the power law spectrum valid in the X-ray region and then

a rapid decrease in intensity in the region from 35 to 170 MeV.

IV. DISCUSSION

It seems a plausible hypothesis to assume that the regions examined

thus far by SAS-II are representative of the whole sky and consider the

possible origin of the radiation. Until more SAS-II data from many regions

of the sky have been analyzed, of course, it is not possible to state

definitely that the radiation is uniform over the sky, and uniform also on

a fine scale. There is the possibility that the radiation is the sum of

many weak discrete or extended sources of unknown origin. However, there

are at least two other possibilities, one that the radiation comes from

diffuse electrons interacting with matter, photons, or magnetic fields and

the other is that the gamma rays are of cosmological origin.

With regard to the diffuse electron possibility, bremsstrahlung seems

unlikely. In an energy region, 1 to 10 MeV, where an increased slope would

be expected due to an increasing rate of energy loss, the opposite is ob-

served. For both synchrotron and Compton radiation, the observed photon

spectrum would imply a similarly shaped parent electron spectrum which

would have even very much sharper spectral features. Further, for all

three cases, the intensity seems high to be consistent with reasonable

estimates of the interstellar parameters.

Of the pure gamma ray cosmological hypotheses, there are two of which

the authors are aware that seem to be possible candidates. They are the

cosmic ray-interstellar matter interaction model and the particle-anti-

particle annihilation in the baryon symmetry steady state model. In

both theories, the resulting gamma ray spectrum, which is primarily due

to no decay, is red-shifted substantially by the expansion of the universe.
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In an expanding model of the universe, the density of matter is much

greater in the cosmological past than it is observed to be in the present.

However, since the gamma radiation produced in interactions of cosmic rays

with matter in the distant past reaches us from large distances, the energy

of these photons is degraded by the cosmological redshift caused by the

expansion of the universe. One curve developed by Stecker (1969) involving

red-shifts up to about 100 is shown in Fig. 2. The theoretical curve is

seen to agree with experimental data reasonably well.

An alternate attempt to explain the gamma radiation through red-

shifted gamma rays from rro decay arises from the big bang theory of cos-

mology with the principle of baryon-symmetry. Harrison (1967) was one of

the first to propose a model of this type. Omnes (1969), following Gamow

(1948), considered a big-bang model in which the universe is initially at

a very high temperature and density, and then shows that, if the universe

is baryon-symmetric, a separation of matter from anti-matter occurred at

T > 30 MeV. The initial phase separation of matter and anti-matter leads

ultimately to regions of pure matter and pure anti-matter of the size of

galaxy clusters. Stecker, Morgan, and Bredekamp (1971) have predicted

the gamma ray spectrum which would be expected from annihilation at the

boundaries of such clusters from the beginning of their existence to the

present. This spectrum is very similar (essentially indistinguishable)

to the one in Fig. 2 in the energy range for which data exists, and is

not included in the figure for that reason.

Further data on the uniformity of the intensity and energy spectrum

of this radiation both in local regions and over the sky will be crucial

in establishing whether the cosmological gamma ray hypotheses are possible
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FIGURE CAPTIONS

Fig. 1. Distribution of high energy (E7 > 100 MeV) rays along the

galactic plane in the interval (-10' < bll < 100). The

dashed line indicates the level of the diffuse background.

The relative number on the left-hand scale is approximately

equal to 10+ 4 x photons/(cm 2 radian sec).

Fig. 2. Distribution of high energy (E > 100 MeV) gamma rays

summed from 11 = 3300 to 11 = 300 as a function of bl1 1

The OSO-III data is that of Kraushaar et al. (1973). The

dashed curve through the SAS-II data is a gaussian distri-

bution with a = 4.50 . As indicated in the text, this

distribution still includes a substantial experimental

angular uncertainty, so the real distribution of gamma

rays is narrower.

Fig. 3. Energy spectrum for gamma rays from the region

(-100 < bl1 < 10'0, 3300 < 11 < 300). The solid curve

is the best estimate of the total spectrum and the dashed

curve represents the contribution after the diffuse back-

ground has been subtracted.
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